search
尋找貓咪~QQ 地點 桃園市桃園區 Taoyuan , Taoyuan

Health Effects of Sunlight Exposure - Getting Closer to God's Voice 1985

Do not Suppress Your Negative Feelings 

Researchers Oliver John of UC Berkeley and James Gross of Stanford found that “negative” feelings like sorrow or anger only intensify when we try to suppress them. Do not deny your negative emotions but to figure the roots of it.  If we do not recognize the source or reasons of our negative feeling, we can’t solve it or uproot it. Running away from our negative emotions can be a futile attempt. A study led by Sanjay Srivastava of the University of Oregon found that college students who bottled up their emotions felt less close to others and were less satisfied with their social lives.

 

Sunlight Exposure Boosts Our Mood

Sunlight has a profound positive impact on our mental health. An estimated 20 percent of Americans are affected by Seasonal Affective Disorder (SAD) in winter and suffer from the blues, fatigue or even depression. What differentiates SAD from regular depression is that full remission occurs in the spring and summer, which explains why depression rates rise during fall and winter.

 

Nature’s healing power is backed up by science. A plenty of studies show that spending time in nature helps reduce stress and anxiety.Beyond this, sunlight energizes vitamin D, which has been shown to calm the nervous system and relieve seasonal affective disorder (SAD). Vitamin D also promotes calcium absorption in the body.  A series of studies published in the Journal of Environmental Psychology found that people who were exposed to nature for 20 minutes a day experienced elevated energy levels and better overall mood. A study by the University of Rochester asserts that nature helps people to be more generous and more socially conscious. Studies have shown that having indoor plants help reduce headaches and fatigue.

 

Based on TCM theory, overthinking and anxiety are be harmful to our brain and kidney. Having a blonde movement occasionally can be good for our brain by letting our brain having a break time.

Light Therapy 

Light therapy is thought to affect brain chemicals, which helps alleviate  SAD symptoms,  anxiety, depression, PTSD, and sleep disorders.  Light therapy is also titled as bright light therapy or phototherapy.  Nevertheless, light therapy fails to “fix” a broken heart or wounded mind. Try your best to find the positive meanings behind anything that breaks your heart. 

 

Vitamin D Production and Depression 
Sunlight affects our serotonin, endorphins, nitric oxide levels, and mitochondrial energy. A deficiency of vitamin D is strongly associated with a higher risk of depression.Research has shown having a vitamin D level below 20 nanograms per milliliter (ng/mL) can raise risk for depression by as much as 85 percent, compared to having a vitamin D level greater than 30 ng/mL. A number of studies also confirmed that vitamin D supplementation help alleviate depression symptoms. 3

 

Ultraviolet B radiation is the only portion to photosynthesize vitamin D in our skin.Swiss specialist Dr. Auguste Rollier argues that the composition of the different parts of the light spectrum is crucially important to secure all of the benefits from sun exposure.

 

According to Dr. Alexander Wunsch, as human beings remove the stimulus sunlight from daily lives, people would end up with a variety of problems. As noted by Wunsch in an interview:“Sunlight induces coordinated endocrine adaptation effects. It affects sympathetic and parasympathetic activity, and is a major circadian and seasonal stimulus for the body clock …Our system, via the eyes and via the skin, detects the colors of the light in the environment in order to adapt the hormonal system to the specific needs of the time and place.”

 

According to a paper published in the journal Dermato-Endocrinology,6 a large number of molecules (chromophores) found in the different layers of our skin absorb and interact with ultraviolet rays, producing a number of complex and synergistic effects. In a word, our body uses the near-infrared light spectrum to produce mitochondrial energy and maintain systemic equilibrium.

 

Sunlight regulates our circadian rhythm

  • When situated in the darkness , our melatonin level increases.
  • Ultraviolet (UV) light have a mood-boosting effect because it stimulates epidermal cells known as keratinocytes to make beta-endorphins. Exposure to sunlight helps the secretion of serotonin,thereby elevates our mood and energy.

 

Nitric oxide (NO) :Lower inflammation

UVA generates nitric oxidein our skin  stimulates up to 60 percent of our blood to flow to our skin capillaries where absorb energy and infrared radiation. UVA helps kill infections in blood while the infrared radiation recharges our cellular battery. Nitric oxide also protects our heart by relaxing our blood vessels and lowering our blood pressure by actinig as a natural antioxidant. Significantly, nitric oxide helps lower inflammation level. 

 

Vitamin D Deficiency and Depression

There’s ample evidence suggesting vitamin D plays an important role in mental health.A 2007 study suggested that vitamin D deficiency is responsible for depression symptoms and anxiety in patients with fibromyalgia[1] A double-blind randomized trial published in 2008 notes that high doses of vitamin D were effective at alleviating depression symptoms.

 

Tips for Beating the Winter Blues

1.Regular exercise 

Regular exercise has been proved to be more effective than antidepressant drugs in fighting against SAD. Because exercise normalizes our insulin levels[2] and boosts “feel good” hormones in our brain. Researchers have discovered that exercise allows our body to eliminate kynurenine[3] , which is a harmful protein associated with depression.12

 

2. Sleep early/ Sufficient sleep 

There’s a direct link between depression and sleep deprivation. Approximately, of the 18 million Americans with depression, more than half of them are struggling with insomnia. People with sleep deprivation are more likely to feel blue. Also, insomnia was one of a stereotypical symptom of depression.  

 

Sleep therapy: One study found that 87 percent of depression patients who resolved their insomnia defeated their depression symptoms eight weeks later.

 

3.A balanced diet 

Diet and food have an profound  impact on our emotions. A balanced diet help improve our mental health.

4.Avoid processed foods

Most processed foods have lots of refined sugar, processed fructose and synthetic chemicals,  all of which are known to have detrimental  impact on our brain.Thus, cutting out artificial sweeteners is a must.

 

5. Fermented foods are good for gut health.

Indeed, gut produces more mood-regulating serotonin[4] than our brain does. Fermented foods are able to optimize our gut health.

 

5. Omega-3 fats

Omega-3 fats are an important nutrient for brain function.[5]

 

6. Vitamin B12 deficiency 

Vitamin B12 deficiency is a common factor which contributes to depression symptoms.

 

[1] 中文:纖維肌痛

[2] 中文:胰島素水平

[3] 中文:犬尿氨酸

[4] 中文: 血清素

[5] One 2009 study showed that people with lower blood levels of omega-3s were more likely to have symptoms of depression.

 


Reference

Sunshine-exposure variation of human striatal dopamine D(2)/D(3) receptor availability in healthy volunteers.

The neurobiology of the stress-resistant brain

Interactions between sleep, stress, and metabolism: From physiological to pathological conditions Camila Hirotsu,⁎ Sergio Tufik, and Monica Levy Andersen

Health Benefits of Sunlight M. Nathaniel Mead

Sun Exposure and Its Effects on Human Health: Mechanisms through Which Sun Exposure Could Reduce the Risk of Developing Obesity and Cardiometabolic Dysfunction By Naomi FleurySian Geldenhuys, and Shelley Gorman*

Sunlight Effects on Immune System: UV-Induced Immunosuppression D. H. González MaglioM. L. Paz, and J. Leoni

Enhanced Oxidative Stress Resistance through Activation of a Zinc Deficiency Transcription Factor in Brachypodium distachyon

 


Further  Reading

1. Seetho I.W., Wilding J.P. Sleep-disordered breathing, type 2 diabetes and the metabolic syndrome. Chron Respir Dis. 2014;11(4):257–275. [PubMed[Google Scholar]
2. Meerlo P., Sgoifo A., Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–210. [PubMed[Google Scholar]
3. Spencer R.L., Kim P.J., Kalman B.A., Cole M.A. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology. 1998;139(6):2718–2726. [PubMed[Google Scholar]
4. Buckley T.M., Schatzberg A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–3114. [PubMed[Google Scholar]
5. Kalsbeek A., van der Spek R., Lei J., Endert E., Buijs R.M., Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349(1):20–29. [PubMed[Google Scholar]
6. Spiegel K., Tasali E., Leproult R., Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5(5):253–261.[PMC free article] [PubMed[Google Scholar]
7. Steiger A. Neurochemical regulation of sleep. J Psychiatr Res. 2007;41(7):537–552.[PubMed[Google Scholar]
8. Gonnissen H.K., Hulshof T., Westerterp-Plantenga M.S. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev. 2013;14(5):405–416. [PubMed[Google Scholar]
9. Buxton O.M., Copinschi G., Van Onderbergen A., Karrison T.G., Van Cauter E. A benzodiazepine hypnotic facilitates adaptation of circadian rhythms and sleep-wake homeostasis to an eight hour delay shift simulating westward jet lag. Sleep. 2000;23(7):915–927. [PubMed[Google Scholar]
10. Caufriez A., Moreno-Reyes R., Leproult R., Vertongen F., Van Cauter E., Copinschi G. Immediate effects of an 8-h advance shift of the rest-activity cycle on 24-h profiles of cortisol. Am J Physiol Endocrinol Metab. 2002;282(5):E1147–E1153. [PubMed[Google Scholar]
11. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J. Clin. Sleep Med. 2007;3(5 Suppl):S7–10. [PMC free article] [PubMed[Google Scholar]
12. Adam K., Tomeny M., Oswald I. Physiological and psychological differences between good and poor sleepers. J Psychiatr Res. 1986;20(4):301–316. [PubMed[Google Scholar]
13. Vgontzas A.N., Tsigos C., Bixler E.O., Stratakis C.A., Zachman K., Kales A. Chronic insomnia and activity of the stress system: a preliminary study. J Psychosom Res. 1998;45(1):21–31. [PubMed[Google Scholar]
14. Vgontzas A.N., Bixler E.O., Lin H.M., Prolo P., Mastorakos G., Vela-Bueno A. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–3794. [PubMed[Google Scholar]
15. Rodenbeck A., Hajak G. Neuroendocrine dysregulation in primary insomnia. Rev. Neurol. (Paris) 2001;157(11 Pt 2):S57–S61. [PubMed[Google Scholar]
16. Spiegel K., Leproult R., Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–1439. [PubMed[Google Scholar]
17. Balbo M., Leproult R., Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234.[PMC free article] [PubMed[Google Scholar]
18. Grunstein R.R., Stewart D.A., Lloyd H., Akinci M., Cheng N., Sullivan C.E. Acute withdrawal of nasal CPAP in obstructive sleep apnea does not cause a rise in stress hormones. Sleep. 1996;19(10):774–782. [PubMed[Google Scholar]
19. Bratel T., Wennlund A., Carlstrom K. Pituitary reactivity, androgens and catecholamines in obstructive sleep apnoea. Effects of continuous positive airway pressure treatment (CPAP). Respir Med. 1999;93(1):1–7. [PubMed[Google Scholar]
20. Tomfohr L.M., Edwards K.M., Dimsdale J.E. Is obstructive sleep apnea associated with cortisol levels? A systematic review of the research evidence. Sleep Med Rev. 2012;16(3):243–249. [PMC free article] [PubMed[Google Scholar]
21. Rapoport D., Rothenburg S.A., Hollander C.S., Goldring R.M. Obstructive sleep apnea (OSA) alters ultradian rhythm of ACTH secretion. American Review of Respiratory Disease. 139. 1999:A80. [Google Scholar]
22. Dadoun F., Darmon P., Achard V., Boullu-Ciocca S., Philip-Joet F., Alessi M.C. Effect of sleep apnea syndrome on the circadian profile of cortisol in obese men. Am. J. Physiol. Endocrinol. Metab. 2007;293(2):E466–E474. [PubMed[Google Scholar]
23. Lanfranco F., Gianotti L., Pivetti S., Navone F., Rossetto R., Tassone F. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function. Clin Endocrinol (Oxf) 2004;60(1):41–48. [PubMed[Google Scholar]
24. Karaca Z., Ismailogullari S., Korkmaz S., Cakir I., Aksu M., Baydemir R. Obstructive sleep apnoea syndrome is associated with relative hypocortisolemia and decreased hypothalamo-pituitary-adrenal axis response to 1 and 250mug ACTH and glucagon stimulation tests. Sleep Med. 2013;14(2):160–164. [PubMed[Google Scholar]
25. Weitzman E.D., Zimmerman J.C., Czeisler C.A., Ronda J. Cortisol secretion is inhibited during sleep in normal man. J Clin Endocrinol Metab. 1983;56(2):352–358.[PubMed[Google Scholar]
26. Leproult R., Copinschi G., Buxton O., Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 1997;20(10):865–870. [PubMed[Google Scholar]
27. Follenius M., Brandenberger G., Bandesapt J.J., Libert J.P., Ehrhart J. Nocturnal cortisol release in relation to sleep structure. Sleep. 1992;15(1):21–27. [PubMed[Google Scholar]
28. Seifritz E., Hemmeter U., Trachsel L., Lauer C.J., Hatzinger M., Emrich H.M. Effects of flumazenil on recovery sleep and hormonal secretion after sleep deprivation in male controls. Psychopharmacology (Berl) 1995;120(4):449–456. [PubMed[Google Scholar]
29. Kant G.J., Genser S.G., Thorne D.R., Pfalser J.L., Mougey E.H. Effects of 72 hour sleep deprivation on urinary cortisol and indices of metabolism. Sleep. 1984;7(2):142–146. [PubMed[Google Scholar]
30. Akerstedt T., Palmblad J., de la Torre B., Marana R., Gillberg M. Adrenocortical and gonadal steroids during sleep deprivation. Sleep. 1980;3(1):23–30. [PubMed[Google Scholar]
31. Andersen M.L., Bignotto M., Tufik S. Influence of paradoxical sleep deprivation and cocaine on development of spontaneous penile reflexes in rats of different ages. Brain Res. 2003;968(1):130–138. [PubMed[Google Scholar]
32. Spath-Schwalbe E., Scholler T., Kern W., Fehm H.L., Born J. Nocturnal adrenocorticotropin and cortisol secretion depends on sleep duration and decreases in association with spontaneous awakening in the morning. J Clin Endocrinol Metab. 1992;75(6):1431–1435. [PubMed[Google Scholar]
33. Hasler G., Buysse D.J., Klaghofer R., Gamma A., Ajdacic V., Eich D. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004;27(4):661–666. [PubMed[Google Scholar]
34. Vorona R.D., Winn M.P., Babineau T.W., Eng B.P., Feldman H.R., Ware J.C. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch. Intern. Med. 2005;165(1):25–30.[PubMed[Google Scholar]
35. Ehlers C.L., Reed T.K., Henriksen S.J. Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology. 1986;42(6):467–474. [PubMed[Google Scholar]
36. Holsboer F., von Bardeleben U., Steiger A. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology. 1988;48(1):32–38. [PubMed[Google Scholar]
37. Gillin J.C., Jacobs L.S., Fram D.H., Snyder F. Acute effect of a glucocorticoid on normal human sleep. Nature. 1972;237(5355):398–399. [PubMed[Google Scholar]
38. Born J., DeKloet E.R., Wenz H., Kern W., Fehm H.L. Gluco- and antimineralocorticoid effects on human sleep: a role of central corticosteroid receptors. Am. J. Physiol. 1991;260(2 Pt 1):E183–E188. [PubMed[Google Scholar]
39. Vazquez-Palacios G., Retana-Marquez S., Bonilla-Jaime H., Velazquez-Moctezuma J. Further definition of the effect of corticosterone on the sleep-wake pattern in the male rat. Pharmacol Biochem Behav. 2001;70(2-3):305–310. [PubMed[Google Scholar]
40. Born J., Spath-Schwalbe E., Schwakenhofer H., Kern W., Fehm H.L. Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J Clin Endocrinol Metab. 1989;68(5):904–911. [PubMed[Google Scholar]
41. Bierwolf C., Kern W., Molle M., Born J., Fehm H.L. Rhythms of pituitary-adrenal activity during sleep in patients with Cushing׳s disease. Exp Clin Endocrinol Diabetes. 2000;108(7):470–479. [PubMed[Google Scholar]
42. Spiegel K., Knutson K., Leproult R., Tasali E., Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J. Appl. Physiol. 2005;99(5):2008–2019. [PubMed[Google Scholar]
43. Vioque J., Torres A., Quiles J. Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain. Int J Obes Relat Metab Disord. 2000;24(12):1683–1688. [PubMed[Google Scholar]
44. Padilha H.G., Crispim C.A., Zimberg I.Z., De-Souza D.A., Waterhouse J., Tufik S. A link between sleep loss, glucose metabolism and adipokines. Braz J Med Biol Res. 2011;44(10):992–999. [PubMed[Google Scholar]
45. Zimberg I.Z., Damaso A., Del Re M., Carneiro A.M. H. de Sa Souza, F.S. de Lira, et al., Short sleep duration and obesity: mechanisms and future perspectives. Cell Biochem Funct. 2012;30(6):524–529. [PubMed[Google Scholar]
46. Kohatsu N.D., Tsai R., Young T., Vangilder R., Burmeister L.F., Stromquist A.M. Sleep duration and body mass index in a rural population. Arch Intern Med. 2006;166(16):1701–1705. [PubMed[Google Scholar]
47. Gupta N.K., Mueller W.H., Chan W., Meininger J.C. Is obesity associated with poor sleep quality in adolescents? Am J Hum Biol. 2002;14(6):762–768. [PubMed[Google Scholar]
48. Patel S.R., Hu F.B. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 2008;16(3):643–653. [PMC free article] [PubMed[Google Scholar]
49. Spiegel K., Tasali E., Penev P., Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–850. [PubMed[Google Scholar]
50. Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91(11):881–884. [PMC free article][PubMed[Google Scholar]
51. Cappuccio F.P., Taggart F.M., Kandala N.B., Currie A., Peile E., Stranges S. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–626. [PMC free article] [PubMed[Google Scholar]
52. Maquet P. Sleep function(s) and cerebral metabolism. Behav Brain Res. 1995;69(1-2):75–83. [PubMed[Google Scholar]
53. Cirelli C., Faraguna U., Tononi G. Changes in brain gene expression after long-term sleep deprivation. J Neurochem. 2006;98(5):1632–1645. [PubMed[Google Scholar]
54. Simon C., Gronfier C., Schlienger J.L., Brandenberger G. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 1998;83(6):1893–1899. [PubMed[Google Scholar]
55. Sinton C.M., Fitch T.E., Gershenfeld H.K. The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation. J Sleep Res. 1999;8(3):197–203. [PubMed[Google Scholar]
56. Crispim C.A., Zalcman I., Dattilo M., Padilha H.G., Edwards B., Waterhouse J. The influence of sleep and sleep loss upon food intake and metabolism. Nutr Res Rev. 2007;20(2):195–212. [PubMed[Google Scholar]
57. Weikel J.C., Wichniak A., Ising M., Brunner H., Friess E., Held K. Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab. 2003;284(2):E407–E415.[PubMed[Google Scholar]
58. Schussler P., Uhr M., Ising M., Weikel J.C., Schmid D.A., Held K. Nocturnal ghrelin, ACTH, GH and cortisol secretion after sleep deprivation in humans. Psychoneuroendocrinology. 2006;31(8):915–923. [PubMed[Google Scholar]
59. Spiegel K., Leproult R., L׳Hermite-Baleriaux M., Copinschi G., Penev P.D., Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–5771. [PubMed[Google Scholar]
60. Taheri S., Lin L., Austin D., Young T., Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62. [PMC free article] [PubMed[Google Scholar]
61. Mullington J.M., Chan J.L., Van Dongen H.P., Szuba M.P. J. Samaras, N.J. Price, et al., Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15(9):851–854. [PubMed[Google Scholar]
62. Bodosi B., Gardi J., Hajdu I., Szentirmai E., Obal F., Jr., Krueger J.M. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1071–R1079. [PubMed[Google Scholar]
63. Buxton O.M., Pavlova M., Reid E.W., Wang W., Simonson D.C., Adler G.K. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–2133. [PMC free article] [PubMed[Google Scholar]
64. Nedeltcheva A.V., Kilkus J.M. J. Imperial, D.A. Schoeller and P.D. Penev, Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435–441. [PMC free article] [PubMed[Google Scholar]
65. Pejovic S., Vgontzas A.N., Basta M., Tsaoussoglou M., Zoumakis E., Vgontzas A. Leptin and hunger levels in young healthy adults after one night of sleep loss. J Sleep Res. 2010;19(4):552–558. [PMC free article] [PubMed[Google Scholar]
66. St-Onge M.P. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med. 2013;9(1):73–80.[PMC free article] [PubMed[Google Scholar]
67. Gonnissen H.K., Hursel R., Rutters F., Martens E.A., Westerterp-Plantenga M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br J Nutr. 2012:1–9. [PubMed[Google Scholar]
68. Shaw J.E., Punjabi N.M., Wilding J.P., Alberti K.G., Zimmet P.Z. E. International Diabetes Federation Taskforce on, et al., Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract. 2008;81(1):2–12. [PubMed[Google Scholar]
69. Foster G.D., Sanders M.H., Millman R., Zammit G., Borradaile K.E., Newman A.B. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32(6):1017–1019. [PMC free article] [PubMed[Google Scholar]
70. Laaban J.P., Daenen S., Leger D., Pascal S., Bayon V., Slama G. Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. Diabetes Metab. 2009;35(5):372–377. [PubMed[Google Scholar]
71. Lurie A. Metabolic disorders associated with obstructive sleep apnea in adults. Adv Cardiol. 2011;46:67–138. [PubMed[Google Scholar]
72. Hecht L., Mohler R., Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci. 9. 2011:Doc20. [PMC free article] [PubMed[Google Scholar]
73. Rolls A., Schaich Borg J. and L. de Lecea, Sleep and metabolism: role of hypothalamic neuronal circuitry. Best Pract Res Clin Endocrinol Metab. 2010;24(5):817–828. [PubMed[Google Scholar]
74. Kok S.W., Overeem S., Visscher T.L., Lammers G.J., Seidell J.C., Pijl H. Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res. 2003;11(9):1147–1154. [PubMed[Google Scholar]
75. Fortuyn H.A., Swinkels S., Buitelaar J., Renier W.O., Furer J.W., Rijnders C.A. High prevalence of eating disorders in narcolepsy with cataplexy: a case-control study. Sleep. 2008;31(3):335–341. [PMC free article] [PubMed[Google Scholar]
76. Tsujino N., Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61(2):162–176. [PubMed[Google Scholar]
77. Beitinger P.A., Fulda S., Dalal M.A., Wehrle R., Keckeis M., Wetter T.C. Glucose tolerance in patients with narcolepsy. Sleep. 2012;35(2):231–236. [PMC free article][PubMed[Google Scholar]
78. Poli F., Plazzi G., Di Dalmazi G., Ribichini D., Vicennati V., Pizza F. Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep. 2009;32(11):1491–1497. [PMC free article] [PubMed[Google Scholar]
79. van Drongelen A., Boot C.R., Merkus S.L., Smid T., van der Beek A.J. The effects of shift work on body weight change – a systematic review of longitudinal studies. Scand J Work Environ Health. 2011;37(4):263–275. [PubMed[Google Scholar]
80. Crispim C.A., Waterhouse J., Damaso A.R., Zimberg I.Z., Padilha H.G., Oyama L.M. Hormonal appetite control is altered by shift work: a preliminary study. Metabolism. 2011;60(12):1726–1735. [PubMed[Google Scholar]
81. Ortega F.B., Chillon P., Ruiz J.R., Delgado M., Albers U., Alvarez-Granda J.L. Sleep patterns in Spanish adolescents: associations with TV watching and leisure-time physical activity. Eur J Appl Physiol. 2010;110(3):563–573. [PubMed[Google Scholar]
82. Knutson K.L. Sex differences in the association between sleep and body mass index in adolescents. J Pediatr. 2005;147(6):830–834. [PubMed[Google Scholar]
83. Jung C.M., Melanson E.L., Frydendall E.J., Perreault L., Eckel R.H., Wright K.P. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J. Physiol. 2011;589(Pt 1):235–244. [PMC free article] [PubMed[Google Scholar]
84. Benedict C., Hallschmid M., Lassen A., Mahnke C., Schultes B., Schioth H.B. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011;93(6):1229–1236. [PubMed[Google Scholar]
85. Schmid S.M., Hallschmid M., Jauch-Chara K., Wilms B., Benedict C., Lehnert H. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009;90(6):1476–1482. [PubMed[Google Scholar]
86. St-Onge M.P., Roberts A.L., Chen J., Kelleman M., O׳Keeffe M., RoyChoudhury A. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–416. [PMC free article][PubMed[Google Scholar]
87. Nedeltcheva A.V., Kilkus J.M. J. Imperial, K. Kasza, D.A. Schoeller and P.D. Penev, Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–133. [PMC free article] [PubMed[Google Scholar]
88. Hursel R., Rutters F., Gonnissen H.K., Martens E.A., Westerterp-Plantenga M.S. Effects of sleep fragmentation in healthy men on energy expenditure, substrate oxidation, physical activity, and exhaustion measured over 48 h in a respiratory chamber. Am J Clin Nutr. 2011;94(3):804–808. [PubMed[Google Scholar]
89. Buman M.P., Hekler E.B., Bliwise D.L., King A.C. Exercise effects on night-to-night fluctuations in self-rated sleep among older adults with sleep complaints. J. Sleep Res. 2011;20(1 Pt 1):28–37. [PMC free article] [PubMed[Google Scholar]
90. Fuller P.M., Lu J., Saper C.B. Differential rescue of light- and food-entrainable circadian rhythms. Science. 2008;320(5879):1074–1077. [PMC free article] [PubMed[Google Scholar]
91. Karklin A., Driver H.S., Buffenstein R. Restricted energy intake affects nocturnal body temperature and sleep patterns. Am J Clin Nutr. 1994;59(2):346–349. [PubMed[Google Scholar]
92. Penev P.D. Sleep deprivation and energy metabolism: to sleep, perchance to eat? Curr Opin Endocrinol Diabetes Obes. 2007;14(5):374–381. [PubMed[Google Scholar]
93. Champaneri S., Wand G.S., Malhotra S.S., Casagrande S.S., Golden S.H. Biological basis of depression in adults with diabetes. Curr Diab Rep. 2010;10(6):396–405.[PubMed[Google Scholar]
94. Beauquis J., Homo-Delarche F., Revsin Y., De Nicola A.F., Saravia F. Brain alterations in autoimmune and pharmacological models of diabetes mellitus: focus on hypothalamic-pituitary-adrenocortical axis disturbances. Neuroimmunomodulation. 2008;15(1):61–67. [PubMed[Google Scholar]
95. Krolow R., Noschang C., Arcego D.M., Huffell A.P., Marcolin M.L., Benitz A.N. Sex-specific effects of isolation stress and consumption of palatable diet during the prepubertal period on metabolic parameters. Metabolism. 2013;62(9):1268–1278.[PubMed[Google Scholar]
96. Chrousos G.P. The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 24. 2000;Suppl 2:S50–S55. [PubMed[Google Scholar]
97. Pervanidou P., Chrousos G.P. Metabolic consequences of stress during childhood and adolescence. Metabolism. 2012;61(5):611–619. [PubMed[Google Scholar]
98. de Oliveira C., de Mattos A.B., Biz C., Oyama L.M., Ribeiro E.B., do Nascimento C.M. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations. Lipids Health Dis. 2011;10:11. [PMC free article][PubMed[Google Scholar]
99. Ely D.R., Dapper V., Marasca J., Correa J.B., Gamaro G.D., Xavier M.H. Effect of restraint stress on feeding behavior of rats. Physiol Behav. 1997;61(3):395–398.[PubMed[Google Scholar]
100. Varma M., Chai J.K., Meguid M.M., Gleason J.R., Yang Z.J. Effect of operative stress on food intake and feeding pattern in female rats. Nutrition. 1999;15(5):365–372.[PubMed[Google Scholar]
101. Willner P. Animal models as simulations of depression. Trends Pharmacol Sci. 1991;12(4):131–136. [PubMed[Google Scholar]
102. Dallman M.F., Strack A.M., Akana S.F., Bradbury M.J., Hanson E.S., Scribner K.A. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol. 1993;14(4):303–347. [PubMed[Google Scholar]
103. Stephens T.W., Basinski M., Bristow P.K., Bue-Valleskey J.M., Burgett S.G., Craft L. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377(6549):530–532. [PubMed[Google Scholar]
104. Garcia-Prieto M.D., Tebar F.J., Nicolas F., Larque E., Zamora S., Garaulet M. Cortisol secretary pattern and glucocorticoid feedback sensitivity in women from a Mediterranean area: relationship with anthropometric characteristics, dietary intake and plasma fatty acid profile. Clin Endocrinol (Oxf) 2007;66(2):185–191. [PubMed[Google Scholar]
105. Pecoraro N., Gomez F., Dallman M.F. Glucocorticoids dose-dependently remodel energy stores and amplify incentive relativity effects. Psychoneuroendocrinology. 2005;30(9):815–825. [PubMed[Google Scholar]
106. Pecoraro N., Reyes F., Gomez F., Bhargava A., Dallman M.F. Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology. 2004;145(8):3754–3762. [PubMed[Google Scholar]
107. Rask E., Olsson T., Soderberg S., Andrew R., Livingstone D.E., Johnson O. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418–1421. [PubMed[Google Scholar]
108. Travison T.G., O׳Donnell A.B., Araujo A.B., Matsumoto A.M., McKinlay J.B. Cortisol levels and measures of body composition in middle-aged and older men. Clin Endocrinol (Oxf) 2007;67(1):71–77. [PubMed[Google Scholar]
109. Vgontzas A.N., Pejovic S., Zoumakis E., Lin H.M., Bentley C.M., Bixler E.O. Hypothalamic-pituitary-adrenal axis activity in obese men with and without sleep apnea: effects of continuous positive airway pressure therapy. J Clin Endocrinol Metab. 2007;92(11):4199–4207. [PubMed[Google Scholar]
110. Anagnostis P., Athyros V.G., Tziomalos K., Karagiannis A., Mikhailidis D.P. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94(8):2692–2701. [PubMed[Google Scholar]
111. Tomlinson J.W., Walker E.A., Bujalska I.J., Draper N., Lavery G.G., Cooper M.S. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25(5):831–866. [PubMed[Google Scholar]
112. Bose M., Olivan B., Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009;16(5):340–346. [PMC free article] [PubMed[Google Scholar]
113. Tomlinson J.W., Moore J., Cooper M.S., Bujalska I., Shahmanesh M., Burt C. Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology. 2001;142(5):1982–1989.[PubMed[Google Scholar]
114. Dieudonne M.N., Sammari A., Dos Santos E., Leneveu M.C., Giudicelli Y., Pecquery R. Sex steroids and leptin regulate 11beta-hydroxysteroid dehydrogenase I and P450 aromatase expressions in human preadipocytes: Sex specificities. J Steroid Biochem Mol Biol. 2006;99(4-5):189–196. [PubMed[Google Scholar]
115. Masuzaki H., Paterson J., Shinyama H., Morton N.M., Mullins J.J., Seckl J.R. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–2170. [PubMed[Google Scholar]
116. Kershaw E.E., Morton N.M., Dhillon H., Ramage L., Seckl J.R., Flier J.S. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes. 2005;54(4):1023–1031. [PMC free article] [PubMed[Google Scholar]
117. Alberts P., Engblom L., Edling N., Forsgren M., Klingstrom G., Larsson C. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia. 2002;45(11):1528–1532.[PubMed[Google Scholar]
118. Sundbom M., Kaiser C., Bjorkstrand E., Castro V.M., Larsson C., Selen G. Inhibition of 11betaHSD1 with the S-phenylethylaminothiazolone BVT116429 increases adiponectin concentrations and improves glucose homeostasis in diabetic KKAy mice. BMC Pharmacol. 8. 2008:3. [PMC free article] [PubMed[Google Scholar]
119. Gluck M.E. Stress response and binge eating disorder. Appetite. 2006;46(1):26–30.[PubMed[Google Scholar]
120. Laue L., Gold P.W., Richmond A., Chrousos G.P. The hypothalamic-pituitary-adrenal axis in anorexia nervosa and bulimia nervosa: pathophysiologic implications. Adv. Pediatr. 1991;38:287–316. [PubMed[Google Scholar]
121. Tataranni P.A., Larson D.E., Snitker S., Young J.B., Flatt J.P., Ravussin E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am. J. Physiol. 1996;271(2 Pt 1):E317–E325. [PubMed[Google Scholar]
122. Stimson R.H., Johnstone A.M., Homer N.Z., Wake D.J., Morton N.M., Andrew R. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J Clin Endocrinol Metab. 2007;92(11):4480–4484. [PubMed[Google Scholar]
123. Lucassen E.A., Cizza G. The Hypothalamic-Pituitary-Adrenal Axis, Obesity, and Chronic Stress Exposure: Sleep and the HPA Axis in Obesity. Curr Obes Rep. 2012;1(4):208–215. [PMC free article] [PubMed[Google Scholar]
124. Galvao Mde O., Sinigaglia-Coimbra R., Kawakami S.E., Tufik S., Suchecki D. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology. 2009;34(8):1176–1183. [PubMed[Google Scholar]
125. Meerlo P., Koehl M., van der Borght K., Turek F.W. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol. 2002;14(5):397–402. [PubMed[Google Scholar]
126. Winsky-Sommerer R., Yamanaka A., Diano S., Borok E., Roberts A.J., Sakurai T. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004;24(50):11439–11448.[PubMed[Google Scholar]
127. Sandoval D.A., Davis S.N. Leptin: metabolic control and regulation. J Diabetes Complications. 2003;17(2):108–113. [PubMed[Google Scholar]
128. Seelig E., Keller U., Klarhofer M., Scheffler K., Brand S., Holsboer-Trachsler E. Neuroendocrine regulation and metabolism of glucose and lipids in primary chronic insomnia: a prospective case-control study. PLoS One. 2013;8(4):e61780.[PMC free article] [PubMed[Google Scholar]

 

Light and UV Stress

  • Caldwell MM (1979) Plant life and ultraviolet radiation: some perspective in the history of the earth’s UV climate. BioScience 29:520–525CrossRefGoogle Scholar
  • Caldwell MM (1981) Plant response to ultraviolet radiation. In: Encyclopedia of Plant Physiology NS, vol 12A. Springer, Berlin Heidelberg New York, pp 169–197Google Scholar
  • Demming-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  • Osmond CB, Chow WS (1988) Ecology of photosynthesis in the sun and shade: summary and prognostications. Aust J Plant Physiol 15:1–9CrossRefGoogle Scholar
  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44CrossRefGoogle Scholar
  • Wellmann E (1983) UV radiation in photomorphogenesis. In: Encyclopedia of Plant Physiology NS, vol 16 B. Springer, Berlin Heidelberg New York, pp 745–756Google Scholar

e. Biogenic Stress (Plant Diseases)

  • Bell AA (1981) Biochemical mechanisms of disease resistance. Annu Rev Plant Physiol 32:21–81CrossRefGoogle Scholar
  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907PubMedCrossRefGoogle Scholar
  • Burgeff H (1909) Die Wurzelpilze der Orchideen, ihre Kultur und ihr Leben in der Pflanze. Fischer, JenaGoogle Scholar
  • Callow JA (1983) Biochemical plant pathology. Wiley, Chichester New York BrisbaneGoogle Scholar
  • Dixon RA (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61:239–291CrossRefGoogle Scholar
  • Downum KR (1992) Light-activated plant defence. New Phytol 122:401–420CrossRefGoogle Scholar
  • Ebel J (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopathol 24:235–264CrossRefGoogle Scholar
  • Ebel J, Cosio EG (1993) Elicitors of plant defense responses. Int J Cytol 148:1–36Google Scholar
  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150CrossRefGoogle Scholar
  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654CrossRefGoogle Scholar
  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc Natl Acad Sci (USA) 77:2113–2118CrossRefGoogle Scholar
  • Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens — a cytological and physiological evaluation. New Phytol 124:193–213CrossRefGoogle Scholar
  • Moser M, Haselwandter K (1983) Ecophysiology of mycorrhizal symbioses. In: Encyclopedia of Plant Physiology NS, vol 12C. Springer, Berlin Heidelberg New York, pp 391–421Google Scholar
  • Scheel D, Parker JE (1990) Elicitor recognition and signal transduction in plant defense gene activation. Z Naturforsch 45c:569–575Google Scholar
  • Staples RC, Toenniessen GH (1981) Plant disease control. Resistance and susceptibility. Wiley, New York Chichester BrisbaneGoogle Scholar
  • Werner D (1987) Pflanzliche und mikrobielle Symbiosen. Thieme, Stuttgart New YorkGoogle Scholar


熱門推薦

本文由 beeigood 提供 原文連結

寵物協尋 相信 終究能找到回家的路
寫了7763篇文章,獲得2次喜歡
留言回覆
回覆
精彩推薦